Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sports Sci ; 41(10): 927-936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37609886

RESUMO

The understanding of rowing performance has been predominantly gained through quantitative sports science-based research. In combination with this objective information, coaches' experiences may provide important contextual information for how this quantitative evidence is implemented into training programmes. The aims of this study were to (1) explore coaches' perspectives of performance indicators for competitive rowing in junior rowers, and (2) identify coaches' recommendations for developing effective technique and movement competency among junior rowers who have the potential to transition to elite competition. Twenty-seven semi-structured interviews were conducted with experienced rowing coaches through purposive sampling of an accredited coaching network. Participants' coaching experience ranged from 5 to 46 (M = 22, SD = 10) years. Data were analysed using thematic analysis. Three overarching themes were identified including, (1) getting the basics right, (2) targeting types of talent, and (3) complexities of performance. Based on these findings, sequence and boat feel, supported through the movement competency provided by hip flexibility and the trunk musculature, were considered critical for executing correct technique. Developing talent and understanding successful performance are both complex concepts when considering the individual athlete. Coaches' perspectives provided insight into key components of performance to enhance our understanding of how to better develop junior rowers.


Assuntos
Tutoria , Esportes , Esportes Aquáticos , Humanos , Atletas , Inquéritos e Questionários
2.
Int J Sports Physiol Perform ; 18(11): 1321-1327, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643756

RESUMO

PURPOSE: Quantifying training intensity provides a comprehensive understanding of the training stimulus. Recent technological advances may have improved the feasibility of using heart-rate (HR) monitoring in swimming. However, the implementation of HR monitoring is yet to be assessed longitudinally in the daily training environment of swimmers. This study aimed to assess the implementation of HR by comparing the training-intensity distribution from an external measure, planned volume at set intensities (PVSI), with the internal training-intensity distribution measured using time in HR zones. METHODS: Using a longitudinal observational design, 10 competitive swimmers (8 male and 2 female, age: 22.0 [2.3] y, Fédération Internationale de Natation point score: 842.9 [58.5], mean [SD]) were monitored daily for 6 months. Each session, HR data, and coached-planned and athlete-reported session rating of perceived exertion (Modified Category Ratio 10 scale) were recorded. Based on previously determined training zones from an incremental step test, PVSI was calculated using the planned distance and planned intensity of each swim bout. Training-intensity distributions were analyzed using a linear mixed model (lme4). RESULTS: The model revealed a small to moderate relationship between PVSI and time in HR zone, based on the Nakagawa R-squared value (range .14-.42). CONCLUSIONS: Training-intensity distribution differed between the internal measure (ie, HR) and the external measure of intensity (ie, PVSI). This demonstrates that internal and planned external measures of intensity cannot be used interchangeably to monitor training. Further research should explore how to best integrate these measures to better understand training in swimming.


Assuntos
Esforço Físico , Natação , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Atletas , Teste de Esforço , Frequência Cardíaca
3.
Sports Med ; 53(9): 1667-1679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37022589

RESUMO

Various terms used in sport and exercise science, and medicine, are derived from other fields such as epidemiology, pharmacology and causal inference. Conceptual and nomological frameworks have described training load as a multidimensional construct manifested by two causally related subdimensions: external and internal training load. In this article, we explain how the concepts of training load and its subdimensions can be aligned to classifications used in occupational medicine and epidemiology, where exposure can also be differentiated into external and internal dose. The meanings of terms used in epidemiology such as exposure, external dose, internal dose and dose-response are therefore explored from a causal perspective and their underlying concepts are contextualised to the physical training process. We also explain how these concepts can assist in the validation process of training load measures. Specifically, to optimise training (i.e. within a causal context), a measure of exposure should be reflective of the mediating mechanisms of the primary outcome. Additionally, understanding the difference between intermediate and surrogate outcomes allows for the correct investigation of the effects of exposure measures and their interpretation in research and applied settings. Finally, whilst the dose-response relationship can provide evidence of the validity of a measure, conceptual and computational differentiation between causal (explanatory) and non-causal (descriptive and predictive) dose-response relationships is needed. Regardless of how sophisticated or "advanced" a training load measure (and metric) appears, in a causal context, if it cannot be connected to a plausible mediator of a relevant response (outcome), it is likely of little use in practice to support and optimise the training process.


Assuntos
Esportes , Humanos , Exercício Físico , Causalidade
4.
Eur J Sport Sci ; 23(7): 1102-1109, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35965450

RESUMO

This study aimed to define, develop, and validate a subjective scale of training quality. Two related studies were used to 1) define training quality and 2) develop and validate a subjective scale. Part One: a purposive sample of 15 sub-elite (i.e. national) and elite (i.e. international) swimmers participated in one, 20-30-min semi-structured interview. Thematic analysis of interview responses established three constructs to define training quality. These were the physical, technical, and mental aspects of training. Part Two: development of the Subjective Training Quality (STQ) scale based on the three constructs identified in Part One. 252 sub-elite and elite athletes, across eight sports completed the STQ scale. Cronbach's alpha (α) assessed internal consistency, histogram plot analysis assessed face validity, and confirmatory factor analysis (CFA) compared physical, technical, and mental constructs with training quality. Root mean square error of approximation (RMSEA) and standardised root mean square residual (SRMR) evaluated CFA quality of fit. Physical, technical, and mental constructs demonstrated a high "acceptable" level of internal consistency (α = 0.85) and excellent face validity. Comparatively, the CFA quality of fit was "excellent" (RMSEA = <0.01 "good", SRMR = 0.00 "perfect"). The STQ scale demonstrated excellent internal consistency and face validity, establishing capacity to monitor training quality. The STQ scale could be used in conjunction with traditional training monitoring tools to provide additional insight into athlete's training quality. Further investigation is required to determine how the STQ scale may interact with subjective and objective training performance measures, and how it could be incorporated into daily training monitoring.HighlightsAthletes perceive the subjective training quality (STQ) scale adequately represents the physical, technical, and mental constructs of training quality.Excellent internal consistency and confirmatory factor analysis fit demonstrates the STQ scale is an effective tool to monitor training quality.With additional validation, the STQ scale could be used in conjunction with traditional load monitoring tools to provide greater insight to an athlete's training response, and subsequently inform training prescription.


Assuntos
Psicometria , Humanos , Inquéritos e Questionários , Reprodutibilidade dos Testes , Análise Fatorial
6.
Front Psychol ; 13: 854474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645851

RESUMO

The purpose of this study was to examine the effectiveness of a neuro-meditation program to support nurses during the COVID-19 pandemic. Forty-five (10 men and 35 women) nurses were classified into three groups based on their systolic blood pressure: normotensive (G-nor; n = 16, 43.8 ± 11.0 year), hypertensive (G-hyp; n = 13, 45.2 ± 10.7 year) and control (G-con; n = 16, 44.9 ± 10.6 year). Using a parallel, randomly controlled design across a 4-week period, 10 × 30-min sessions using the Rebalance© Impulse were completed. Sleep was assessed by wrist actigraphy and subjective sleep questionnaires; perceived sleep quality, Ford Insomnia Response to Stress Test questionnaire and the Spiegel Sleep Quality questionnaire (SSQ). Blood pressure, resting heart rate, mean heart rate (HRmean), heart rate variability index (RMSSD), cortisol, and alpha-amylase were also measured. Statistical analysis was completed using factorial ANOVA. Sleep improved in the G-hyp group; SSQ (p < 0.01); perceived sleep quality (p < 0.01); sleep efficiency and fragmentation index (p < 0.05). In the G-nor group, sleep was improved to a lesser extent; perceived sleep quality (p < 0.01). A significant time-group interaction was reported in resting heart rate (p < 0.01), systolic blood pressure (p < 0.01), and diastolic blood pressure (p < 0.05) with these measures being significantly reduced in the G-hyp group. RMSSD increased in the G-nor group (p < 0.01). This initial evidence suggests that neuro-meditation reduces excessive sympathetic activity, promoting enhanced sleep quality and autonomic control during periods of increased work-related stress. Clinical Trial Registration: The study was conducted at Bioesterel, Sophia-Antipolis, France as a clinical trial: Neuro-meditation improves sleep quality, https://www.drks.de/ui_data_web/DrksUI.html?locale=en, DRKS00025731.

7.
Sports Med ; 52(2): 391-401, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34591266

RESUMO

BACKGROUND: Track cyclists must develop mental, physical, tactical and technical capabilities to achieve success at an elite level. Given the importance of these components in determining performance, it is of interest to understand the volume of evidence to support implementation in practice by coaches, practitioners, and athletes. OBJECTIVE: The aim of this study was to conduct a systematic mapping review to describe the current scale and density of research for testing, training and optimising performance in track cycling. METHODS: All publications involving track cyclist participants were reviewed from four databases (PubMed, SPORTDiscus, Academic Search Complete, Cochrane Library) plus additional sources. Search results returned 4019 records, of which 71 met the inclusion criteria for the review. RESULTS: The review revealed most published track cycling research investigated athlete testing followed by performance optimisation, with training being the least addressed domain. Research on the physical components of track cycling has been published far more frequently than for tactical or technical components, and only one study was published on the mental components of track cycling. No true experimental research using track cyclists has been published, with 51 non-experimental and 20 quasi-experimental study designs. CONCLUSIONS: Research in track cycling has been growing steadily. However, it is evident there is a clear preference toward understanding the physical-rather than mental, tactical, or technical-demands of track cycling. Future research should investigate how this aligns with coach, practitioner, and athlete needs for achieving track cycling success. REGISTRATION: This systematic mapping review was registered on the Open Science Framework (osf.io/wt7eq).


Assuntos
Atletas , Ciclismo , Humanos , Exame Físico
9.
Int J Sports Physiol Perform ; 16(12): 1901-1904, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021091

RESUMO

PURPOSE: This study aimed to independently validate a wearable inertial sensor designed to monitor training and performance metrics in swimmers. METHODS: A total of 4 male (21 [4] y, 1 national and 3 international) and 6 female (22 [3] y, 1 national and 5 international) swimmers completed 15 training sessions in an outdoor 50-m pool. Swimmers were fitted with a wearable device (TritonWear, 9-axis inertial measurement unit with triaxial accelerometer, gyroscope, and magnetometer), placed under the swim cap on top of the occipital protuberance. Video footage was captured for each session to establish criterion values. Absolute error, standardized effect, and Pearson correlation coefficient were used to determine the validity of the wearable device against video footage for total swim distance, total stroke count, mean stroke count, and mean velocity. A Fisher exact test was used to analyze the accuracy of stroke-type identification. RESULTS: Total swim distance was underestimated by the device relative to video analysis. Absolute error was consistently higher for total and mean stroke count, and mean velocity, relative to video analysis. Across all sessions, the device incorrectly detected total time spent in backstroke, breaststroke, butterfly, and freestyle by 51% (15%). The device did not detect time spent in drill. Intraclass correlation coefficient results demonstrated excellent intrarater reliability between repeated measures across all swimming metrics. CONCLUSIONS: The wearable device investigated in this study does not accurately measure distance, stroke count, and velocity swimming metrics or detect stroke type. Its use as a training monitoring tool in swimming is limited.


Assuntos
Natação , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Monitorização Fisiológica , Reprodutibilidade dos Testes
10.
Int J Sports Physiol Perform ; 15(9): 1260-1271, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937599

RESUMO

PURPOSE: To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. METHODS: Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk-1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. RESULTS: There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, -2.8% ±1.8%; H+H, -2.0% ±1.5%; CONT, -2.0% ±1.8%) and TTenvironment (HOT, -3.3% ±1.7%; H+H, -3.1% ±1.6%; CONT, -3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). CONCLUSION: Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.

11.
J Sports Sci ; 38(18): 2092-2099, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32475220

RESUMO

This study aimed to investigate swimmer's use and coach prescription of recovery strategies during training and competition while examining perceived challenges, barriers, and beliefs in the importance of their effectiveness. A mixed-methods sequential explanatory design was implemented. Thirty-seven male and 45 female sub-elite to elite swimmers (age 18 ± 3 y), and 4 male and 6 female coaches (age 40 ± 9 y) completed an online, 78-item recovery strategy survey. Swimmers and coaches responded to questions regarding when, why, and how they used recovery strategies, perceived challenges and barriers to strategy inclusion during training and competition. Data were coded and analysed thematically. Fisher's Exact Test was conducted on 5-point Likert scale responses. Most recovery strategies were used and prescribed more during competition. Swimmers reported active recovery as the most effective recovery strategy (44%), whereas coaches rated sleep or napping (40%). Swimmers and coaches perceived most recovery strategies to be more effective and important during competition than in training. Swimmers used, and coaches prescribed, recovery strategies more during the competition, highlighting the discrepancies in use between training and competition. Targeted education programmes should enhance athletes and coach's recovery knowledge and practical application of strategies, while accounting for individual sport and life demands.


Assuntos
Atletas/psicologia , Fadiga/prevenção & controle , Tutoria , Mialgia/prevenção & controle , Percepção , Natação/fisiologia , Natação/psicologia , Adolescente , Adulto , Temperatura Baixa , Comportamento Competitivo , Exercícios de Desaquecimento , Feminino , Humanos , Hidroterapia , Imersão , Masculino , Fadiga Muscular , Condicionamento Físico Humano , Sono , Adulto Jovem
12.
Int J Sports Physiol Perform ; 15(6): 847-852, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163925

RESUMO

PURPOSE: To assess a coach's subjective assessment of their athletes' performances and whether the use of athlete-monitoring tools could improve on the coach's prediction to identify performance changes. METHODS: Eight highly trained swimmers (7 male and 1 female, age 21.6 [2.0] y) recorded perceived fatigue, total quality recovery, and heart-rate variability over a 9-month period. Prior to each race of the swimmers' main 2 events, the coach (n = 1) was presented with their previous race results and asked to predict their race time. All race results (n = 93) with aligning coach's predictions were recorded and classified as a dichotomous outcome (0 = no change; 1 = performance decrement or improvement [change +/- > or < smallest meaningful change]). A generalized estimating equation was used to assess the coach's accuracy and the contribution of monitoring variables to the model fit. The probability from generalized estimating equation models was assessed with receiver operating characteristic curves to identify the model's accuracy from the area under the curve analysis. RESULTS: The coach's predictions had the highest diagnostic accuracy to identify both decrements (area under the curve: 0.93; 95% confidence interval, 0.88-0.99) and improvements (area under the curve: 0.89; 95% confidence interval, 0.83-0.96) in performance. CONCLUSIONS: These findings highlight the high accuracy of a coach's subjective assessment of performance. Furthermore, the findings provide a future benchmark for athlete-monitoring systems to be able to improve on a coach's existing understanding of swimming performance.


Assuntos
Desempenho Atlético , Tutoria/métodos , Natação , Análise e Desempenho de Tarefas , Desempenho Atlético/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Intuição , Julgamento , Masculino , Fadiga Muscular/fisiologia , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/psicologia , Competência Profissional , Natação/fisiologia , Adulto Jovem
13.
Front Physiol ; 10: 1307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695621

RESUMO

This study evaluated the effectiveness of an innovative strategy which combined low-frequency ultra sound (LOFU) with high-intensity interval training (HIIT) to improve physical fitness and promote body fat loss in overweight sedentary women. A placebo controlled, parallel group randomized experimental design was used to investigate the efficacy of a 2-week combined LOFU and HIIT program (3 sessions per week). Participants were allocated into either the Experimental HIIT group (HIITEXP, n = 10) or Placebo HIIT group (HIITPLA, n = 10). Baseline exercise testing (maximal oxygen uptake, lower limb strength and substrate oxidation test), dietary assessment, anthropometric measures and blood sampling were completed in week 1 and repeated in week 4 to determine changes following the program (Post-HIIT). During each training session, the HIITEXP and HIITPLA groups wore a non-thermal diffuse ultrasound belt. However, the belt was only switched on for the HIITEXP group. Delta change scores were calculated for body weight, body fat percentage (Fat%), muscle mass, V . O2 max, hip and waist circumferences, and all lipid variables from Baseline to Post-HIIT. Statistical analysis was completed using a repeated-measures factorial analysis of variance by group (HIITPLA and HIITEXP) and time (Baseline and Post-HIIT). Results showed significant improvements in maximal oxygen uptake (HIITEXP; Baseline 24.7 ± 5.4 mL kg-1 min-1, Post-HIIT 28.1 ± 5.5 mL kg-1 min-1 and HIITPLA; Baseline 28.4 ± 5.9 mL kg-1 min-1, Post-HIIT 31.4 ± 5.5 mL kg-1 min-1) for both groups. Significant decreases in Fat% (HIITEXP; Baseline 32.7 ± 3.2%, Post-HIIT 28.9 ± 3.5% and HIITPLA; Baseline 28.9 ± 3.5%, Post-HIIT 28.9 ± 3.4% kg), waist circumference (HIITEXP; Baseline 95.8 ± 9.6 cm, Post-HIIT 89.3 ± 8.9 cm and HIITPLA; Baseline 104.3 ± 3.5 cm, Post-HIIT 103.6 ± 3.4 cm) and triglycerides (HIITEXP; -29.2%, HIITPLA; -6.7%) were observed in the HIITEXP group only. These results show that HIIT combined with LOFU was an effective intervention to improve body composition, lipid profile, and fitness. This combined strategy allowed overweight, sedentary women to achieve positive health outcomes in as little as 2 weeks.

14.
Int J Sports Physiol Perform ; 14(5): 635-643, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427243

RESUMO

Purpose: To determine whether combining training in heat with "Live High, Train Low" hypoxia (LHTL) further improves thermoregulatory and cardiovascular responses to a heat-tolerance test compared with independent heat training. Methods: A total of 25 trained runners (peak oxygen uptake = 64.1 [8.0] mL·min-1·kg-1) completed 3-wk training in 1 of 3 conditions: (1) heat training combined with "LHTL" hypoxia (H+H; FiO2 = 14.4% [3000 m], 13 h·d-1; train at <600 m, 33°C, 55% relative humidity [RH]), (2) heat training (HOT; live and train <600 m, 33°C, 55% RH), and (3) temperate training (CONT; live and train <600 m, 13°C, 55% RH). Heat adaptations were determined from a 45-min heat-response test (33°C, 55% RH, 65% velocity corresponding to the peak oxygen uptake) at baseline and immediately and 1 and 3 wk postexposure (baseline, post, 1 wkP, and 3 wkP, respectively). Core temperature, heart rate, sweat rate, sodium concentration, plasma volume, and perceptual responses were analyzed using magnitude-based inferences. Results: Submaximal heart rate (effect size [ES] = -0.60 [-0.89; -0.32]) and core temperature (ES = -0.55 [-0.99; -0.10]) were reduced in HOT until 1 wkP. Sweat rate (ES = 0.36 [0.12; 0.59]) and sweat sodium concentration (ES = -0.82 [-1.48; -0.16]) were, respectively, increased and decreased until 3 wkP in HOT. Submaximal heart rate (ES = -0.38 [-0.85; 0.08]) was likely reduced in H+H at 3 wkP, whereas CONT had unclear physiological changes. Perceived exertion and thermal sensation were reduced across all groups. Conclusions: Despite greater physiological stress from combined heat training and "LHTL" hypoxia, thermoregulatory adaptations are limited in comparison with independent heat training. The combined stimuli provide no additional physiological benefit during exercise in hot environments.


Assuntos
Aclimatação , Temperatura Alta , Hipóxia , Corrida/fisiologia , Termotolerância , Adulto , Teste de Esforço , Feminino , Frequência Cardíaca , Humanos , Masculino , Volume Plasmático , Sudorese , Adulto Jovem
15.
Clin Physiol Funct Imaging ; 38(4): 595-602, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28752919

RESUMO

This study assessed whether hypoxia during high-load resistance exercise could enhance the acute physiological responses related to muscular development. Twelve trained men performed exercise in three conditions: normoxia (fraction of inspired oxygen [FI O2 ] = 21%), moderate-level hypoxia (FI O2  = 16%) and high-level hypoxia (FI O2  = 13%). Exercise comprised high-load squats and deadlifts (5 × 5 using 80% of 1-repetition maximum with 180-s rest). Muscle oxygenation and activation were monitored during exercise. Metabolic stress was estimated via capillary blood sampling. Perceived fatigue and soreness were also quantified following exercise. While the hypoxic conditions appeared to affect muscle oxygenation, significant differences between conditions were only noted for maximal deoxyhaemoglobin in the deadlift (P = 0·009). Blood lactate concentration increased from 1·1 to 1·2 mmol l-1 at baseline to 9·5-9·8 mmol l-1 after squats and 10·4-10·5 mmol l-1 after deadlifts (P≤0·001), although there were no between-condition differences. Perceived fatigue and muscle soreness were significantly elevated immediately and at 24 h following exercise, respectively, by similar magnitudes in all conditions (P≤0·001). Muscle activation did not differ between conditions. While metabolic stress is thought to moderate muscle activation and subsequent muscular development during hypoxic resistance training, it is not augmented during traditional high-load exercise. This may be explained by the low number of repetitions performed and the long interset rest periods employed during this training. These findings suggest that high-load resistance training might not benefit from additional hypoxia as has been shown for low- and moderate-load training.


Assuntos
Hipóxia/fisiopatologia , Hipóxia/psicologia , Contração Muscular , Músculo Esquelético/fisiopatologia , Percepção , Treinamento Resistido , Adulto , Biomarcadores/sangue , Metabolismo Energético , Humanos , Hipóxia/sangue , Ácido Láctico/sangue , Masculino , Fadiga Muscular , Força Muscular , Mialgia/fisiopatologia , Mialgia/psicologia , Consumo de Oxigênio , Fatores de Tempo , Adulto Jovem
16.
J Strength Cond Res ; 32(8): 2174-2182, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29239993

RESUMO

Scott, BR, Slattery, KM, Sculley, DV, and Dascombe, BJ. Hypoxia during resistance exercise does not affect physical performance, perceptual responses, or neuromuscular recovery. J Strength Cond Res 32(8): 2174-2182, 2018-This study aimed to determine whether performing resistance exercise in hypoxia affects markers of physical performance, perceptual responses, and neuromuscular function. Fourteen male subjects (age: 24.6 ± 2.7 years; height: 179.7 ± 5.9 cm; body mass: 84.6 ± 11.6 kg) with >2 years resistance training experience performed moderate-load resistance exercise in 2 conditions: normoxia (FIO2 = 0.21) and hypoxia (FIO2 = 0.16). Resistance exercise comprised 3 sets of 10 repetitions of back squats and deadlifts at 60% of 1 repetition maximum (1RM), with 60 seconds inter-set rest. Physical performance was assessed by quantifying velocity and power variables during all repetitions. Perceptual ratings of perceived exertion, physical fatigue, muscle soreness, and overall well-being were obtained during and after exercise. Neuromuscular performance was assessed by vertical jump and isometric mid-thigh pull (IMTP) tasks for up to 48 hours after exercise. Although physical performance declined across sets, there were no differences between conditions. Similarly, perceived exertion and fatigue scores were not different between conditions. Muscle soreness increased from baseline at 24 and 48 hours after exercise in both conditions (p ≤ 0.001). Jump height and IMTP peak force were decreased from baseline immediately after exercise (p ≤ 0.026), but returned to preexercise values after 24 hours. These findings suggest that hypoxic resistance exercise does not affect exercise performance or perceived exercise intensity. In addition, neuromuscular recovery and perceptual markers of training stress were not affected by hypoxia, suggesting that hypoxic resistance training may not add substantially to the training dose experienced.


Assuntos
Hipóxia/fisiopatologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Percepção , Treinamento Resistido/métodos , Adulto , Estudos Cross-Over , Fadiga/fisiopatologia , Fadiga/psicologia , Humanos , Masculino , Mialgia/fisiopatologia , Descanso , Método Simples-Cego , Coxa da Perna , Adulto Jovem
17.
Int J Sports Physiol Perform ; 12(Suppl 2): S295-S2100, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27736255

RESUMO

PURPOSE: To assess measurement sensitivity and diagnostic characteristics of athlete-monitoring tools to identify performance change. METHODS: Fourteen nationally competitive swimmers (11 male, 3 female; age 21.2 ± 3.2 y) recorded daily monitoring over 15 mo. The self-report group (n = 7) reported general health, energy levels, motivation, stress, recovery, soreness, and wellness. The combined group (n = 7) recorded sleep quality, perceived fatigue, total quality recovery (TQR), and heart-rate variability. The week-to-week change in mean weekly values was presented as coefficient of variance (CV%). Reliability was assessed on 3 occasions and expressed as the typical error CV%. Week-to-week change was divided by the reliability of each measure to calculate the signal-to-noise ratio. The diagnostic characteristics for both groups were assessed with receiver-operating-curve analysis, where area under the curve (AUC), Youden index, sensitivity, and specificity of measures were reported. A minimum AUC of .70 and lower confidence interval (CI) >.50 classified a "good" diagnostic tool to assess performance change. RESULTS: Week-to-week variability was greater than reliability for soreness (3.1), general health (3.0), wellness% (2.0), motivation (1.6), sleep (2.6), TQR (1.8), fatigue (1.4), R-R interval (2.5), and LnRMSSD:RR (1.3). Only general health was a "good" diagnostic tool to assess decreased performance (AUC -.70, 95% CI, .61-.80). CONCLUSION: Many monitoring variables are sensitive to changes in fitness and fatigue. However, no single monitoring variable could discriminate performance change. As such the use of a multidimensional system that may be able to better account for variations in fitness and fatigue should be considered.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Autorrelato , Natação/fisiologia , Adulto , Fadiga/fisiopatologia , Feminino , Frequência Cardíaca , Humanos , Estudos Longitudinais , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sono , Adulto Jovem
18.
Med Sci Sports Exerc ; 49(3): 509-517, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27787334

RESUMO

PURPOSE: Independent heat and hypoxic exposure can enhance temperate endurance performance in trained athletes, although their combined effects remain unknown. This study examined whether the addition of heat interval training during "live high, train low" (LHTL) hypoxic exposure would result in enhanced performance and physiological adaptations as compared with heat or temperate training. METHODS: Twenty-six well-trained runners completed 3 wk of interval training assigned to one of three conditions: 1) LHTL hypoxic exposure plus heat training (H + H; 3000 m for 13 h·d, train at 33°C, 60% relative humidity [RH]), 2) heat training with no hypoxic exposure (HOT, live at <600 m and train at 33°C, 60% RH), or 3) temperate training with no hypoxic exposure (CONT; live at <600 m and train at 14°C, 55% RH). Performance 3-km time-trials (3-km TT), running economy, hemoglobin mass, and plasma volume were assessed using magnitude-based inferences statistical approach before (Baseline), after (Post), and 3 wk (3wkP) after exposure. RESULTS: Compared with Baseline, 3-km TT performance was likely increased in HOT at 3wkP (-3.3% ± 1.3%; mean ± 90% confidence interval), with no performance improvement in either H + H or CONT. Hemoglobin mass increased by 3.8% ± 1.8% at Post in H + H only. Plasma volume in HOT was possibly elevated above H + H and CONT at Post but not at 3wkP. Correlations between changes in 3-km TT performance and physiological adaptations were unclear. CONCLUSION: Incorporating heat-based training into a 3-wk training block can improve temperate performance at 3 wk after exposure, with athlete psychology, physiology, and environmental dose all important considerations. Despite hematological adaptations, the addition of LHTL to heat interval training has no greater 3-km TT performance benefit than temperate training alone.


Assuntos
Desempenho Atlético/fisiologia , Temperatura Alta , Condicionamento Físico Humano/métodos , Corrida/fisiologia , Aclimatação/fisiologia , Adaptação Fisiológica , Adulto , Feminino , Hemoglobinometria , Treinamento Intervalado de Alta Intensidade , Humanos , Hipóxia , Masculino , Volume Plasmático
19.
J Strength Cond Res ; 31(7): 1973-1981, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27662491

RESUMO

Scott, BR, Slattery, KM, Sculley, DV, Lockhart, C, and Dascombe, BJ. Acute physiological responses to moderate-load resistance exercise in hypoxia. J Strength Cond Res 31(7): 1973-1981, 2017-This study assessed whether hypoxia augments anabolic responses to moderate-load resistance exercise. Fourteen trained men performed moderate-load resistance exercise in normoxia (NORM; fraction of inspired oxygen [FIO2] = 21%) and moderate-level hypoxia (MH; FIO2 = 16%). Exercise comprised 3 sets of 10 repetitions of squats and deadlifts at 60% of 1 repetition maximum, with 60-second interset rest. Blood lactate (BLa) was quantified after each exercise, whereas arterial oxygen saturation and heart rate (HR) were assessed after each set. Thigh circumference was measured before and after exercise. Muscle activation and oxygenation were monitored by surface electromyography (EMG) and near-infrared spectroscopy, respectively. Relative BLa concentrations were significantly higher following squats (p = 0.041) and deadlifts (p = 0.002) in MH than NORM. Arterial oxygen saturation was lower after each set in MH compared with NORM (p < 0.001), although HR and thigh circumference were not different between conditions. Integrated EMG was higher in MH than in NORM for the squat during several repetitions (p ≤ 0.032). Measures of muscle oxygen status were not significantly different between conditions (p ≥ 0.247). The main findings from this study suggest that hypoxia during moderate-load resistance exercise augments metabolite accumulation and muscle activation. However, a significant hypoxic dose was not measured at the muscle, possibly because of the moderate level of hypoxia used. The current data support previous hypotheses that have suggested hypoxia can augment some physiological responses that are important for muscular development, and may therefore provide benefit over the equivalent training in normoxia.


Assuntos
Hipóxia/fisiopatologia , Treinamento Resistido/métodos , Adulto , Eletromiografia , Frequência Cardíaca/fisiologia , Humanos , Ácido Láctico/sangue , Masculino , Oxigênio/sangue , Descanso , Espectroscopia de Luz Próxima ao Infravermelho , Coxa da Perna/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...